Ab Initio calculation on muonic atoms and molecules

Mihkel Ugandi¹⁾, Ignacio Fdez Galván¹⁾, Per-Olof Widmark²⁾, and Roland Lindh¹⁾

Abstract

In this work, we investigated muonic atoms and molecules from a quantum chemist's viewpoint by incorporating muons in the CASSCF model. With the aim of predicting muonic X-ray energies, primitive muonic basis sets were developed for a selection of elements. The basis sets were then

Illustration 1: Dependence of muonic transition energies on the logarithm of the Gaussian nuclear charge distribution. The vertical line computationally denotes the default value, ξ = 2.767 · 108, for the Gaussian nuclear demonstrated how charge distribution. For comparison we have depicted the experimental transition energies with dashed horizontal lines.

muon can act as a probe

for the nuclear charge

distribution or electronic wave function by considering lower or higher muonic excited states, respectively.

¹⁾ Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden

²⁾ Department of Theoretical Chemistry, Lund University, Lund, Sweden